p-group, metabelian, nilpotent (class 2), monomial
Aliases: C42.292C23, C8⋊9D4⋊35C2, C8⋊6D4⋊36C2, C8⋊4Q8⋊35C2, C8.62(C4○D4), C4⋊D4.21C4, C22⋊Q8.21C4, C4⋊C8.234C22, (C4×M4(2))⋊36C2, (C2×C8).428C23, C42.215(C2×C4), (C4×C8).333C22, (C2×C4).664C24, C42⋊2C2.1C4, C4.4D4.17C4, (C4×D4).61C22, C42.C2.17C4, (C4×Q8).59C22, C8○2M4(2)⋊34C2, C42.6C4⋊47C2, C23.39(C22×C4), C22.D4.5C4, C8⋊C4.164C22, C2.22(Q8○M4(2)), C22⋊C8.141C22, (C22×C8).446C22, (C2×C42).774C22, C22.189(C23×C4), (C22×C4).935C23, C42.7C22⋊23C2, C42⋊C2.307C22, (C2×M4(2)).366C22, C23.36C23.13C2, C2.46(C4×C4○D4), C4⋊C4.118(C2×C4), C4.315(C2×C4○D4), (C2×D4).141(C2×C4), C22⋊C4.17(C2×C4), (C2×Q8).120(C2×C4), (C22×C4).348(C2×C4), (C2×C4).272(C22×C4), SmallGroup(128,1699)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C42.292C23
G = < a,b,c,d,e | a4=b4=e2=1, c2=d2=b, ab=ba, cac-1=a-1b2, dad-1=ab2, ae=ea, bc=cb, bd=db, be=eb, cd=dc, ece=a2c, ede=b2d >
Subgroups: 252 in 181 conjugacy classes, 128 normal (38 characteristic)
C1, C2, C2, C4, C4, C22, C22, C8, C8, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C23, C42, C42, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, C2×C8, M4(2), C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C4×C8, C4×C8, C8⋊C4, C22⋊C8, C22⋊C8, C4⋊C8, C2×C42, C42⋊C2, C4×D4, C4×D4, C4×Q8, C4⋊D4, C22⋊Q8, C22.D4, C4.4D4, C42.C2, C42⋊2C2, C22×C8, C2×M4(2), C4×M4(2), C8○2M4(2), C42.6C4, C42.7C22, C8⋊9D4, C8⋊6D4, C8⋊4Q8, C23.36C23, C42.292C23
Quotients: C1, C2, C4, C22, C2×C4, C23, C22×C4, C4○D4, C24, C23×C4, C2×C4○D4, C4×C4○D4, Q8○M4(2), C42.292C23
(1 42 27 18)(2 23 28 47)(3 44 29 20)(4 17 30 41)(5 46 31 22)(6 19 32 43)(7 48 25 24)(8 21 26 45)(9 51 35 64)(10 61 36 56)(11 53 37 58)(12 63 38 50)(13 55 39 60)(14 57 40 52)(15 49 33 62)(16 59 34 54)
(1 3 5 7)(2 4 6 8)(9 11 13 15)(10 12 14 16)(17 19 21 23)(18 20 22 24)(25 27 29 31)(26 28 30 32)(33 35 37 39)(34 36 38 40)(41 43 45 47)(42 44 46 48)(49 51 53 55)(50 52 54 56)(57 59 61 63)(58 60 62 64)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(1 6 3 8 5 2 7 4)(9 10 11 12 13 14 15 16)(17 46 19 48 21 42 23 44)(18 47 20 41 22 43 24 45)(25 30 27 32 29 26 31 28)(33 34 35 36 37 38 39 40)(49 63 51 57 53 59 55 61)(50 64 52 58 54 60 56 62)
(1 59)(2 55)(3 61)(4 49)(5 63)(6 51)(7 57)(8 53)(9 43)(10 20)(11 45)(12 22)(13 47)(14 24)(15 41)(16 18)(17 33)(19 35)(21 37)(23 39)(25 52)(26 58)(27 54)(28 60)(29 56)(30 62)(31 50)(32 64)(34 42)(36 44)(38 46)(40 48)
G:=sub<Sym(64)| (1,42,27,18)(2,23,28,47)(3,44,29,20)(4,17,30,41)(5,46,31,22)(6,19,32,43)(7,48,25,24)(8,21,26,45)(9,51,35,64)(10,61,36,56)(11,53,37,58)(12,63,38,50)(13,55,39,60)(14,57,40,52)(15,49,33,62)(16,59,34,54), (1,3,5,7)(2,4,6,8)(9,11,13,15)(10,12,14,16)(17,19,21,23)(18,20,22,24)(25,27,29,31)(26,28,30,32)(33,35,37,39)(34,36,38,40)(41,43,45,47)(42,44,46,48)(49,51,53,55)(50,52,54,56)(57,59,61,63)(58,60,62,64), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,6,3,8,5,2,7,4)(9,10,11,12,13,14,15,16)(17,46,19,48,21,42,23,44)(18,47,20,41,22,43,24,45)(25,30,27,32,29,26,31,28)(33,34,35,36,37,38,39,40)(49,63,51,57,53,59,55,61)(50,64,52,58,54,60,56,62), (1,59)(2,55)(3,61)(4,49)(5,63)(6,51)(7,57)(8,53)(9,43)(10,20)(11,45)(12,22)(13,47)(14,24)(15,41)(16,18)(17,33)(19,35)(21,37)(23,39)(25,52)(26,58)(27,54)(28,60)(29,56)(30,62)(31,50)(32,64)(34,42)(36,44)(38,46)(40,48)>;
G:=Group( (1,42,27,18)(2,23,28,47)(3,44,29,20)(4,17,30,41)(5,46,31,22)(6,19,32,43)(7,48,25,24)(8,21,26,45)(9,51,35,64)(10,61,36,56)(11,53,37,58)(12,63,38,50)(13,55,39,60)(14,57,40,52)(15,49,33,62)(16,59,34,54), (1,3,5,7)(2,4,6,8)(9,11,13,15)(10,12,14,16)(17,19,21,23)(18,20,22,24)(25,27,29,31)(26,28,30,32)(33,35,37,39)(34,36,38,40)(41,43,45,47)(42,44,46,48)(49,51,53,55)(50,52,54,56)(57,59,61,63)(58,60,62,64), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,6,3,8,5,2,7,4)(9,10,11,12,13,14,15,16)(17,46,19,48,21,42,23,44)(18,47,20,41,22,43,24,45)(25,30,27,32,29,26,31,28)(33,34,35,36,37,38,39,40)(49,63,51,57,53,59,55,61)(50,64,52,58,54,60,56,62), (1,59)(2,55)(3,61)(4,49)(5,63)(6,51)(7,57)(8,53)(9,43)(10,20)(11,45)(12,22)(13,47)(14,24)(15,41)(16,18)(17,33)(19,35)(21,37)(23,39)(25,52)(26,58)(27,54)(28,60)(29,56)(30,62)(31,50)(32,64)(34,42)(36,44)(38,46)(40,48) );
G=PermutationGroup([[(1,42,27,18),(2,23,28,47),(3,44,29,20),(4,17,30,41),(5,46,31,22),(6,19,32,43),(7,48,25,24),(8,21,26,45),(9,51,35,64),(10,61,36,56),(11,53,37,58),(12,63,38,50),(13,55,39,60),(14,57,40,52),(15,49,33,62),(16,59,34,54)], [(1,3,5,7),(2,4,6,8),(9,11,13,15),(10,12,14,16),(17,19,21,23),(18,20,22,24),(25,27,29,31),(26,28,30,32),(33,35,37,39),(34,36,38,40),(41,43,45,47),(42,44,46,48),(49,51,53,55),(50,52,54,56),(57,59,61,63),(58,60,62,64)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(1,6,3,8,5,2,7,4),(9,10,11,12,13,14,15,16),(17,46,19,48,21,42,23,44),(18,47,20,41,22,43,24,45),(25,30,27,32,29,26,31,28),(33,34,35,36,37,38,39,40),(49,63,51,57,53,59,55,61),(50,64,52,58,54,60,56,62)], [(1,59),(2,55),(3,61),(4,49),(5,63),(6,51),(7,57),(8,53),(9,43),(10,20),(11,45),(12,22),(13,47),(14,24),(15,41),(16,18),(17,33),(19,35),(21,37),(23,39),(25,52),(26,58),(27,54),(28,60),(29,56),(30,62),(31,50),(32,64),(34,42),(36,44),(38,46),(40,48)]])
44 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | ··· | 4Q | 8A | ··· | 8H | 8I | ··· | 8T |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 8 | ··· | 8 | 8 | ··· | 8 |
size | 1 | 1 | 1 | 1 | 4 | 4 | 4 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 2 | ··· | 2 | 4 | ··· | 4 |
44 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 4 |
type | + | + | + | + | + | + | + | + | + | ||||||||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C4 | C4 | C4 | C4 | C4 | C4 | C4○D4 | Q8○M4(2) |
kernel | C42.292C23 | C4×M4(2) | C8○2M4(2) | C42.6C4 | C42.7C22 | C8⋊9D4 | C8⋊6D4 | C8⋊4Q8 | C23.36C23 | C4⋊D4 | C22⋊Q8 | C22.D4 | C4.4D4 | C42.C2 | C42⋊2C2 | C8 | C2 |
# reps | 1 | 1 | 2 | 1 | 2 | 4 | 2 | 2 | 1 | 2 | 2 | 4 | 2 | 2 | 4 | 8 | 4 |
Matrix representation of C42.292C23 ►in GL6(𝔽17)
15 | 9 | 0 | 0 | 0 | 0 |
7 | 2 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 8 | 3 | 1 |
0 | 0 | 0 | 12 | 0 | 1 |
0 | 0 | 12 | 5 | 13 | 0 |
0 | 0 | 0 | 10 | 0 | 5 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 13 | 0 | 0 | 0 |
0 | 0 | 0 | 13 | 0 | 0 |
0 | 0 | 0 | 0 | 13 | 0 |
0 | 0 | 0 | 0 | 0 | 13 |
16 | 0 | 0 | 0 | 0 | 0 |
9 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 3 | 16 | 10 |
0 | 0 | 0 | 3 | 0 | 9 |
0 | 0 | 4 | 4 | 0 | 14 |
0 | 0 | 0 | 8 | 0 | 14 |
16 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 3 | 1 | 9 |
0 | 0 | 0 | 3 | 0 | 9 |
0 | 0 | 13 | 4 | 0 | 0 |
0 | 0 | 0 | 8 | 0 | 14 |
9 | 2 | 0 | 0 | 0 | 0 |
11 | 8 | 0 | 0 | 0 | 0 |
0 | 0 | 8 | 4 | 3 | 1 |
0 | 0 | 12 | 0 | 6 | 1 |
0 | 0 | 5 | 12 | 4 | 0 |
0 | 0 | 10 | 0 | 8 | 5 |
G:=sub<GL(6,GF(17))| [15,7,0,0,0,0,9,2,0,0,0,0,0,0,4,0,12,0,0,0,8,12,5,10,0,0,3,0,13,0,0,0,1,1,0,5],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,13,0,0,0,0,0,0,13,0,0,0,0,0,0,13,0,0,0,0,0,0,13],[16,9,0,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,0,0,3,3,4,8,0,0,16,0,0,0,0,0,10,9,14,14],[16,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,13,0,0,0,3,3,4,8,0,0,1,0,0,0,0,0,9,9,0,14],[9,11,0,0,0,0,2,8,0,0,0,0,0,0,8,12,5,10,0,0,4,0,12,0,0,0,3,6,4,8,0,0,1,1,0,5] >;
C42.292C23 in GAP, Magma, Sage, TeX
C_4^2._{292}C_2^3
% in TeX
G:=Group("C4^2.292C2^3");
// GroupNames label
G:=SmallGroup(128,1699);
// by ID
G=gap.SmallGroup(128,1699);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,2,-2,224,253,723,184,2019,80,124]);
// Polycyclic
G:=Group<a,b,c,d,e|a^4=b^4=e^2=1,c^2=d^2=b,a*b=b*a,c*a*c^-1=a^-1*b^2,d*a*d^-1=a*b^2,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,e*c*e=a^2*c,e*d*e=b^2*d>;
// generators/relations